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Introduction

Studying the internal representation of natural features (fig. 1) in the primary
visual cortex (V1), like direction or spatial frequency, is crucial to understand
how we perceive the external world. Research on 2D motion direction in
non-human primates [1, 2] in particular when displaying naturalistic stimuli
like MotionClouds [3] reveals substantial diversity and multiple mechanisms
within the neuronal population [4] (fig. 2). The aim of this project is to examine
how a large population of V1 neurons encodes stimulus direction and how this
representation is modulated by the uncertainty using decoding methods.

Figure 1: Uncertainty in natural im-
ages and MotionClouds.

Figure 2: Two subpopulation in cats
area 17 (from [4]).

Acknowledgements

This work was supported by ANR-NSF CRCNS grant “PrioSens” N° ANR-20-
NEUC-0002 attributed to G.S.M, N.J.P. and L.U.P. and by a doctoral grant from
the French Ministry of Higher Education and Research, awarded by the Doctoral
School 62 of Aix-Marseille University to A.L.

Methods

Neuronal recordings (fig. 3) were made in V1 of
one marmoset monkey using the Neuropixel 1.0
technology [5] during 2D motion presentation
in eight directions (θ) from 0◦ to 375◦ and two
precision levels (Bθ, high : 22◦ or low : 90◦). The
decoding method (fig. 4) optimizes the weights
of a multinomial logistic regression to achieve
optimal decoding accuracy on a training set.
The objective is to decode the direction of the
motion for each precision level. The training is
conducted (1) on a broad time-window at the
begining or the end of the stimulus presentation,
(2) by applying temporal generalization [6] or
(3) after reducing dimensionality with dPCA [7].
All the results presented here are computed on
the testing test.
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Figure 3: Spiking activity induced by one stimulus (sf = 0.7 c/◦,
Bsf = 0.175 c/◦, spd = 2 ◦/s, θ = 45 ◦, Bθ = 90 ◦)

Figure 4: Decoding method implemented in Python3 using the PyTorch library.

Results
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Figure 5: Decoding results after training (left) on the begining of
the evocked activity or (right) on the end for two precision level
(Bθ).
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Figure 6: Weights learned for three neurons (n° 0, 31, 32).

0.2 0.0 0.2 0.4 0.6
peristimulus time (s)

10

20

30

40

50

ac
cu

ra
cy

train on [0.000s : 0.125s]

0.2 0.0 0.2 0.4 0.6

train on [0.375s : 0.500s]

Figure 7: Decoding results after training (left) on the begining or
(right) on the end of the time course of dPCA components for
two precision level (Bθ).
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Figure 8: Weights learned for three components (n° 0, 1, 2).
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Figure 9: Temporal generalisation of the direction based on neuronal activity for
two level of precision (Bθ).
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Figure 10: Temporal generalisation of the direction based on dPCA components
for two level of precision (Bθ).

Discussion

This decoding approach clarifies the representation of directional informa-
tion in the marmoset primary visual cortex, its stability accross time and its
modulation by the precision level (fig. 5 and 9). The existence of transient and
sustained representations may support distinct functional roles for differents cor-
tical layers [4, 8]. Demixed principal component analysis allows us to reduce
the dimension, work in a neural state space and filter the raw activity. This
transformation improve the decoding accuracy (fig. 7 and 10) and improve the
decoder’s ability to generalise between time steps. Overall, this analysis shows
qualitatively the existence of a stable representation of the information wich is
modulated by the precision level of the stimulus.
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