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Abstract
The aim of this project is to study different machine learning methods and compare them in
order to improve the performance of decoding neural activity recorded in the cat’s primary
visual cortex. In particular, different mathematical preprocessing transformations would
make it possible to modify the decoder’s accuracy based on the assumption that decoding
the neural code does not rely directly, or at least not entirely, on the firing rate. In this
work, we have qualitatively demonstrated that histogram equalization improves the decod-
ing performed by a multinomial logistic regression model, less so in the case for the error
function. This work highlights the importance of finding the right preprocessing method to
bring out the most useful information for the decoder.

Introduction
In order to apprehend the visual information that constitutes the environment, the nervous
system translates and processes all the related information into a complex neuronal activity
in order to create an internal representation that can be used for decision-making, for exam-
ple estimating the main orientation of a scene. Indeed, it has been shown that the firing rate
of neurons in the primary visual cortex (V1) reacts differently depending on the orientation
of the stimulus[3], but also on its contrast[1].

Figure 1 :Activity of the neuronal population for different stimuli[4].

This information encoded by the neuronal activity, for example in the form of a firing rate,
a time-dependent activity or a recurrent pattern, constitutes the neural code. By using math-
ematical models, decoding attempts to learn this code in order to find the stimulus that in-
duced a certain neuronal activity. However, as the information to be translated by the model
is complex and noisy, one way of improving decoding is to add a preprocessing phase that
modifies the medium with which the decoder works. To do this, we use two non-linear
transformations and estimate their influence on the accuracy of the model’s predictions.

Figure 2 : Decoding the populationnal activity.

Methods
⇒ Visual stimulation and electrophysiological recording

The data was collected during in-vivo electrophysiological recordings in 3 cats during which
the visual stimuli are produced by the Motion Cloud[5] model, allowing control of stimulus
orientation (θ) and variability (Bθ). Recording is performed over 12 orientations (from 0 to
180°) and 8 variability (from 0° to 36°), giving a total of 96 possible combinations.

⇒ Preprocessing
1. Histogram equalisation[6] : Non-linear transformation from a real positive variable
(here, with a Poisson-like distribution) to a scalar which is uniformly distributed between 0
and 1. In our case, this non-linear transformation (or rescaling) results in a uniformity that
lowers the impact of maximal points of information, while raising the impact of minimum
points of information, therefore reducing the impact of outliers.
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Figure 3 : Histogram equalization preprocessing.

2. Inverse error function : We also tested a non-linear transformation which rescales firing
rates towards a normal distribution, thus resembling more closely a “natural” distribution.
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Figure 4 : Second stage of preprocessing.

⇒ Decoding with multinomial logistic regression
In order to decode the recorded data, the model used in supervised learning is a multinomial
logistic regression[2], with optimized learning parameters to obtain the best classification
accuracy. The aim of this model is to estimate the most likely stimulus identity (k ∈ K),
which could be θ (K = 12), Bθ (K = 8) or θ × Bθ (K = 96), in function of the temporal
activity of the neuronal population.

P (y = k|X(t)) = exp⟨βk, X(t)⟩∑
1≤k′≤K

exp⟨βk′, X(t)⟩

Results
The decoding of the orientation θ shows a progressive increase of the improvements allowed
by the histogram equalisation when the variability Bθ decreases (Fig.5). Regardless of the
method used, the decoding of variability does not seem to be noticeably influenced by the
transformations performed (Fig.6-A). Stimulus identity decoding is by far the most complex
element, but is improved by the methods used (Fig.6-B). The improvements seem to take
place mainly between -0.5 and 0.5 s around the presentation of the stimulus. On the other
hand, there was no difference between equalisation alone and the combination of the two
transformations.

Figure 5 : Decoding the θ orientation for different Bθ variability.

Figure 6 : Decoding (A) the Bθ variability, and (B) the stimulus identity (θ and Bθ).

Conclusion
The addition of a preprocessing step is an interesting addition from the point of view of
improving the decoding of neuronal activity. Using these rescaling transformations redis-
tributes the data to make it easier for the decoder to interpret, and it seems to be particularly
efficeint when activity is more variable between individuals or between neurons. Separating
neurons according to the specificity of their responses, such as the presence of a population
of neurons resilient to stimulus variability[4], would be an important distinction that would
reduce the quantity of data, but also the ambient noise generated by these non-coding neu-
rons.
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